statistical equilibrium - определение. Что такое statistical equilibrium
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое statistical equilibrium - определение

PHYSICS OF LARGE NUMBER OF PARTICLES' STATISTICAL BEHAVIOR
Statistical Mechanics; Statistical thermodynamics; Non-equilibrium statistical mechanics; Stat mech; Probabilistic mechanics; Statistical dynamics; Fundamental postulate of statistical mechanics; Fundamental assumption of statistical mechanics; Equilibrium statistical mechanics; Classical statistical mechanics; Nonequilibrium statistical mechanics; History of statistical mechanics; Statistical-mechanical

Equilibrium point         
CONSTANT SOLUTION TO A DIFFERENTIAL EQUATION
Equilibrium points; Equilibrium solution; Point of Equilibrium
In mathematics, specifically in differential equations, an equilibrium point is a constant solution to a differential equation.
Competitive equilibrium         
ECONOMIC EQUILIBRIUM CONCEPT
Walrasian equilibrium; Competitive Equilibrium
Competitive equilibrium (also called: Walrasian equilibrium) is a concept of economic equilibrium introduced by Kenneth Arrow and Gérard Debreu in 1951K. Arrow, ‘An Extension of the Basic Theorems of Classical Welfare Economics’ (1951); G.
Mechanical equilibrium         
  • Diagram of a ball placed in a neutral equilibrium.
  • Diagram of a ball placed in a stable equilibrium.
  • Diagram of a ball placed in an unstable equilibrium.
(IN CLASSICAL MECHANICS) A PARTICLE IS IN MECHANICAL EQUILIBRIUM IF THE NET FORCE ON THAT PARTICLE IS ZERO
Static equilibrium; Point of equilibrium; Neutral balance; Mechanical Equilibrium; Static Equilibrium; Equilibrium (mechanics)
In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero.

Википедия

Statistical mechanics

In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles.

Statistical mechanics arose out of the development of classical thermodynamics, a field for which it was successful in explaining macroscopic physical properties—such as temperature, pressure, and heat capacity—in terms of microscopic parameters that fluctuate about average values and are characterized by probability distributions. This established the fields of statistical thermodynamics and statistical physics.

The founding of the field of statistical mechanics is generally credited to three physicists:

  • Ludwig Boltzmann, who developed the fundamental interpretation of entropy in terms of a collection of microstates
  • James Clerk Maxwell, who developed models of probability distribution of such states
  • Josiah Willard Gibbs, who coined the name of the field in 1884

While classical thermodynamics is primarily concerned with thermodynamic equilibrium, statistical mechanics has been applied in non-equilibrium statistical mechanics to the issues of microscopically modeling the speed of irreversible processes that are driven by imbalances. Examples of such processes include chemical reactions and flows of particles and heat. The fluctuation–dissipation theorem is the basic knowledge obtained from applying non-equilibrium statistical mechanics to study the simplest non-equilibrium situation of a steady state current flow in a system of many particles.